ESSENTIAL OIL COMPOSITION OF *Tanacetum alyssifolium*, AN ENDEMIC SPECIES FROM TURKEY

Ali Kandemir,¹ Hakan Ozer,^{2*} Hamdullah Kilic,³ Ahmet Cakir,⁴ and Yavuz Demir⁵

In Turkey, the genus *Tanacetum* (Asteraceae) is represented by 44 species and altogether 59 taxa [1]. Within the genus, *Tanacetum alyssifolium* is an endemic species found in Turkey and also grows only in the Ilic district, Erzincan [1].

The *Tanacetum* species, being rich in essential oils, have been the subject of interest of phytochemists. In the past, many studies have reported on the essential oil compositions of various *Tanacetum* species. In the previous studies [2-12], camphor, 1.8-cineole, α -thujone, carvone, thymol, *trans*-sabinyl acetate, borneol, caryophyllone oxide, (*E*)-myroxide, sabinene, bornylacetate, and isopulegone were determined as the major constitutents of the essential oils of *Tanacetum* species. The findings show that the genus *Tanacetum* had a considerable variation in essential oil composition.

The present work was undertaken to study the chemical composition of the essential oil of *T. alyssifolium* growing wild in Turkey.

In the present study, the analysis of the essential oil from aerial parts has resulted in the characterization of 14 components, representing 99.8% of the total oil. The relative concentrations of the components identified are summarized in Table 1 according to its elution order on the BPX5 MS column. The major constituents were borneol (35.2%), α -thujone (24.6%), camphor (12.4%), β -eudesmol (6.1%), 1,8-cineole (4.8%), and thymol (4.1%). As can be seen from Table 1, the essential oil is composed mainly of monoterpene hydrocarbons (87.9%), followed by oxygenated monoterpenes (4.1%) and oxygenated sesquiterpenes (7.8%).

Component	RI	Content, %	Component	RI	Content, %
1,8-Cineole	1026	4.8	Citronellyl formate*	1222	0.9
(Z)-Sabinene hydrate*	1068	1.1	Thymol	1230	4.1
(E)-Sabinene hydrate*	1097	0.9	Spathulenol*	1351	0.6
α -Thujone	1102	24.6	β -Eudesmol*	1388	6.1
β -Thujone	1112	3.3	Monoterpene hydrocarbons		-
(E)-Pinocarveol	1130	1.1	Oxygenated monoterpenes		87.9
Camphor	1137	12.4	Aromatic monoterpenes		4.1
(Z)-Chrysanthenol*	1147	1.9	Sesquiterpene hydrocarbons		-
Borneol	1156	35.2	Oxygenated sesquiterpenes		7.8
Myrtenal	1171	1.7	Total		99.8

TABLE 1. Chemical Composition of the Essential Oil of Tanacetum alyssifolium (Bomm.) Grierson

RI: retention index. Compounds listed in order of elution from a BPX5 MS column. Identification: GC-MS, RI, CoI (co-injection). *Identifixation: GC-MS, RI.

UDC 547.913

¹⁾ Erzincan University, Education Faculty, Department of Biology, Erzincan 24030, Turkey; 2) Ataturk University, Faculty of Agriculture, Department of Field Crops, Erzurum 25240, Turkey; fax: + 90 2183647, e-mail: haozer@atauni.edu.tr; 3) Ataturk University, Faculty of Art and Science, Department of Chemistry, Erzurum 25240, Turkey; 4) Ataturk University, Kazim Karabekir Education Faculty, Department of Chemistry, Erzurum 25240, Turkey; 5) Ataturk University, Kazim Karabekir Education Faculty, Department of Biology, Erzurum 25240, Turkey. Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 428-429, July-August, 2008. Original article submitted February 6, 2007.

Compared to other *Tanacetum* species [2-9, 11], in this study we found considerable qualitative and quantitative differences in the essential oil composition of *Tanacetum* sample collected from Ilic. This may be due to genotypic variation and climatic and environmental factors [7]. The essential oil composition shows a great variability in the *Tanacetum* genus [13-15], and this chemical diversity, which is mainly genetically determined, can represent a valuable contribution for the chemotaxonomic identification of the plants.

ACKNOWLEDGMENT

The authors are indebted to Ataturk University for the financial support of this work and the State Planning Organization of Turkey (DPT) for purchasing a GC-MS instrument (Ataturk University).

REFERENCES

- 1. P. H. Davis, *Flora of Turkey and the East Aegean Islands*, Vol. 5. University Press: Edinburg, 1975.
- 2. V. K. Kaul, B. Singh, and R. P. Sood, J. Essent. Oil Res. 5, 597 (1993).
- 3. D. Nori-Shargh, H. Norouzi-Arasi, M. Mirza, K. Jaimand, and S. Mohammadi, Flavour Fragr. J., 14, 105 (1999).
- 4. P. Weyerstahl, H. Marschall, K. Thefeld, and A. Rustaiyan, *Flavour Fragr. J.*, 14, 112 (1999).
- 5. H. Greche, N. Hajjaji, M. Ismaili-Alaoui, N. Mrabet, and B. Benjilali, J. Essent. Oil Res., 12, 122 (2000).
- 6. K. H. C. Baser, B. Demirci, N. Tabanca, T. Ozek, and N. Goren, Flavour Fragr. J., 16, 195 (2001).
- 7. N. Goren, B. Demirci, and K. H. C. Baser, Flavour Fragr. J., 16, 191 (2001).
- 8. A. El-Shazly, G. Dorai, and M. Wink, Z. Naturforsch., 57, 620 (2002).
- 9. T. Majed-Jabari, H. Vatanpoor, A. Rustaiyan, S. Masoudi, and A. Monfared, J. Essent. Oil Res., 14, 380 (2002).
- 10. A. Monfared, S. S. H. Davarani, A. Rustaiyan, and S. Masoudi, J. Essent. Oil Res., 14, 1 (2002).
- 11. S. Afsharypuor and M. Jahromy, J. Essent. Oil Res., 15, 74 (2003).
- 12. A. Rustaiyan, F. Mojab, M. Salsali, S. Msoudt, and M. Yari, J. Essent. Oil Res., 11, 497 (1999).
- 13. M. Keskitalo, A. Linden, and J. P. T. Valkonen, Theor. Appl. Genet., 96, 1141 (1998).
- 14. A. R. Cutlan, L. E. Bonilla, J. E. Simon, and J. E. Erwin, *Planta Med.*, 66, 612 (2002).
- 15. J. Rohloff, R. Mordal, and S. Dragland, J. Agric. Food Chem., 24, 1742 (2004).